If it's not what You are looking for type in the equation solver your own equation and let us solve it.
324t^2-360t=0
a = 324; b = -360; c = 0;
Δ = b2-4ac
Δ = -3602-4·324·0
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-360)-360}{2*324}=\frac{0}{648} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-360)+360}{2*324}=\frac{720}{648} =1+1/9 $
| 1/3x-21=32 | | 22=2-y | | 12.95p=44 | | -3(3x+15-(10+x)=35 | | 3.2h-8=h+17 | | y-2=3+2y | | -2(3y-3)+2y=8+2(6y-2) | | 12x+34+6x=46x-29 | | 2x-3+5×+2=90 | | F(n)=-3(n-1);-51 | | 9w-16.5=5.3 | | 2x+5=x/8 | | 5x2/3-10x=0 | | -n/3+10=21 | | -5y-1=-60 | | 16=–d+6 | | 2/3x-1/2=5/6x+2 | | 3x-23=7+9 | | 3x+6(x+4)=-21 | | 4x-8(0,8)=40 | | 2x/1-1=10 | | b/3+1/7=13 | | 75=1-y | | 1x-2/3=x+1/4 | | 2(1+8k)=-34+7k | | 0=3/2x+1/2 | | 5(x+1)=4x+6 | | 2/3b+4=6 | | 2x+12(2)=(x-2)2+16(2) | | 3x/2-1=11 | | 3/10x-2x+4/5=3/5 | | 2(w+3)-5(w-1)=32 |